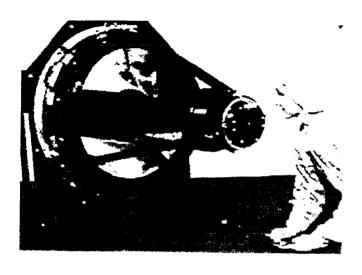
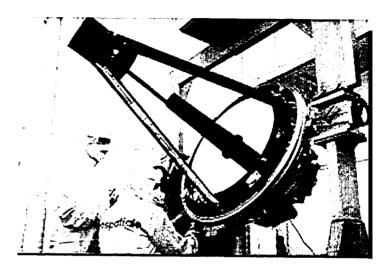
Infrared Space Interferometry Workshop Astrophysics and the Study of Earth-like Planets March 11-14, 1996 Toledo, Spain

Recent Advances in Cryogenic Optics Technology for Space Infrared Telescope and Interferometer Systems

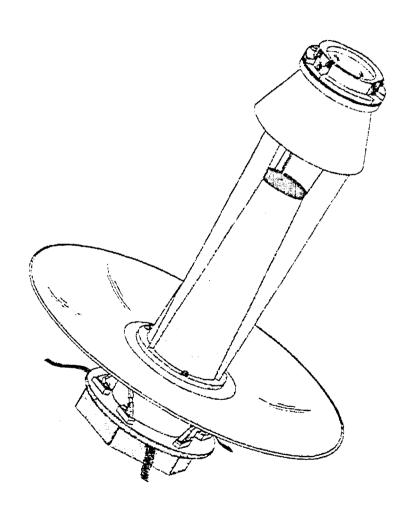

Daniel R. Coulter Steven A Macenka

Jet Propulsion Laboratory California Institute of Technology Pasadena., CA 91109 USA


Cryogenic Space Telescopes

IRAS

1**S**0



1983 launch
liquid He cooled
57cm aperture
Ritchev-Chretien configuration
diffraction limited @ ≈20µm
beryllium* mirrors & structure
70kg mass
(*vacuum hot pressed material)

1995 launch
liquid He cooled
60cm aperture
Ritchey-Chretien configuration
diffraction limited @ 5 µm
fused silica mirrors
invar/aluminum structure
50kg mass

SIRTF Telescope

2001 launch launched warm

-passively cooled to <70K

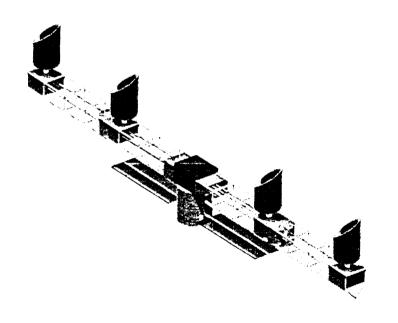
-gaseous He cooled to 5 .5K

85cm aperture

Ritchey-Chretien configuration

diffraction limited @ 6.5µm

beryllium* mirrors


beryllium* structure

(* hot isostatic pressed material)

Ultra-lightweight design yields 30kg mass

Cryogenic Telescopes for Space Interferometers

ExNPS Interferometer Concept

ExNPS Telescope 'Requirements'

- passive cooling to 35K
- ≈50kg mass (per telescope)
- 7-17 urn observational bandwidth
- •1.5m unobscured apertures
- diffraction limited at 2 µm
- high Strehl rati,? low scatter
- amplitude? phase and polarization matching (for nulling)

Cryogenic Space Telescopes

Design Considerations

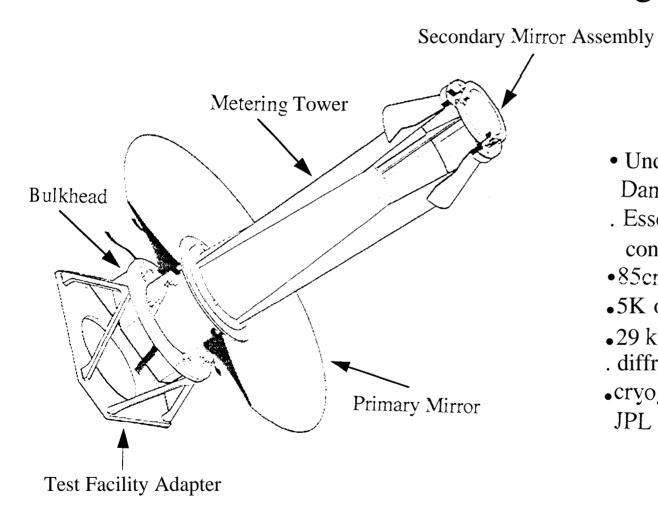
- Cost (Manufacturability)
- Mass
- Optical design (including baffles)
- Athermalized design
- Durability (aunch and on-orbit)
- Mode of cooling (passive or w/cryogen)
- Thermal contraction, thermal mass, thermal conductivity
- Surface figure and micro-roughness
- Coating
- System testing

Candidate Materials

MILLIOUS

- Fused silica
- Silicon carbide
- Beryllium
- A uminum
- Composites
- Hybrids

Structure

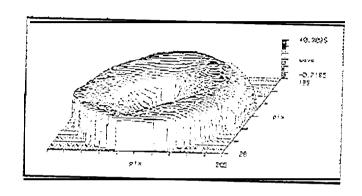

- Aluminum
- Silicon carbide
- Beryllium
- Invar

Composites

Cryogenic Space Telescopes Selected Mirror Materials Considerations

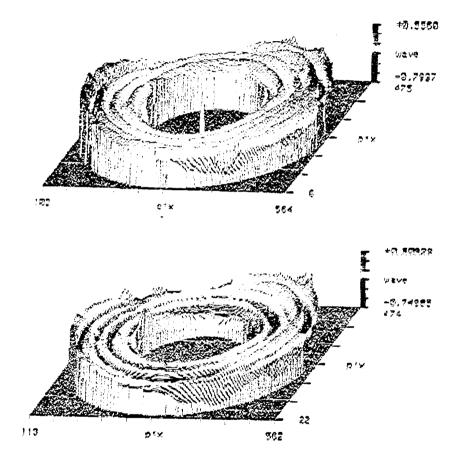
Fused Silica	Silicon Carbide	Beryllium	Aluminum	Composites (CFRP***)
PROS				
 Large Experience Base Low Surface Scatter Good Figure Quality Good Dimensional Stability Low Specific Heat Good Homogeneity 	 High Stiffness Low Surface Scatter Good Figure Quality Good Dimensional Stability Low Specific Heat High Thermal Conductivity Athermalized Systems Near Net Shape with RB* 	 Very Lightweight High Stiffness Good Figure Quality High Thermal	 Very Low Cost Easy to Fabricate High Thermal	 Low Cost Very Low Mass Tailorable Properties High Stiffness High Strength Athermalized Systems High Durability Replication
 Low Thermal Conductivity Difficult to Mount Difficult to Athermalize Heavy or Fragile if Lightweighted 	 Immature Technology Limited Availability Brittle Difficult to Mount Heavy Extent of Possible Lightweighting Unknown 	 Low Microyield High Thermal Contraction Null Figuring Required Limited Availability Limited Size Surface Scattering Expensive 	 Very High Thermal Contraction Heavy Low Stiffness 	 Poor Figure Quality High Surface Scatter Material Variability Anisotropic Moisture Absorbing Outgassing
	* Reaction Bonded	**Hot Isostatic Pressed		*** Carbon Fiber Reinforced Polymer

Infrared Telescope Technology Testbed


- Under development at Hughes Danbury Optical Systems
- . Essentially all beryllium construction
- •85cm clear aperture
- •5K operation
- •29 kg mass
- . diffraction limited at 6.5 µm
- •cryogenic optical testing at JPL

Infrared 'ITelescope Technology Testbed (ITTT) Primary Mirror Assembly

SIRTF Telescope Test Facility



State of the Art Capability

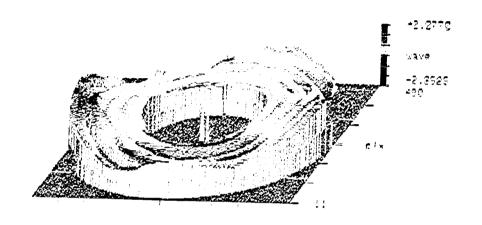
- Phase Shifting Interferometry@ .633µm
- Vertical test configuration
- Vibration isolated
- •1.4m diameter He shroud
- . <5K operation

ITTT Room Temperature Interferometry

September 29, 1995

- . P-V = 1.56 waves
- •rms = 0.192 waves*
- dominant error: concentric zones due to form grinding

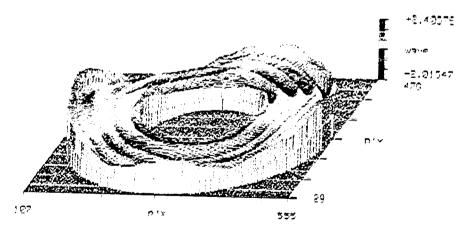
February 14.1996


(following 5 N₂ & 3 He cycles)

- \bullet P-V = 1.35 waves
- •rms = 0.194 waves*

(* surface error)

No "thermal hysteresis" observed in the Primary Mirror Assembly

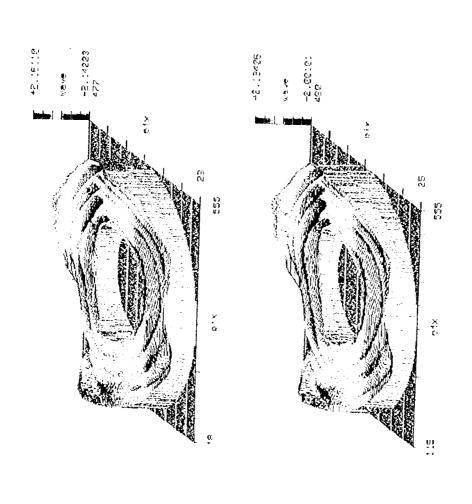

ITTT 77K Interferometry

October 9.1995

. P-V = 4.43 waves

• rms = 0.574 waves*

February 20.1996


. P-V = 4.42 waves

•rms = 0.580 waves*

(* surface error)

≈0.5 wave cryo-distortion observed at liquid nitrogen temperature

ITTT 5K Interferometry

February 21, 1996

- P-V = 4.3° waves
- rms = 0.581 waves*

January 30, 1996

- P-V = 4.2° waves
- rms = 0.588 waves*

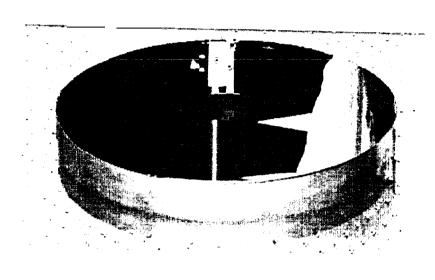
u fa e erro

gu d hel um data essent allv the same as 1 qu d n trooen data

ITTT Primary Merror Data Summary

RMS Surface Figure \leqslant rror (waves @ \circ .633 $_{\text{um}}$) $\circ .2 \circ \pm 0.016$ $0.574 \pm ^{\circ}.02$	Temperature (K) 295 77
---	------------------------

ITTT Current Status Summary

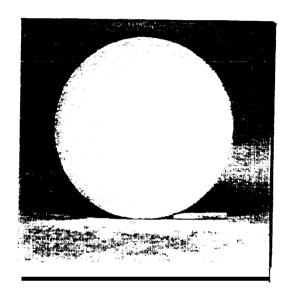

Summary to Date

- . Initial primary mirror assembly (PMA) testing completed (8 cycles to 77K, 3 cycles to 5K)
- . PMA disassembled, primary mirror (PM) tested alone and PMA reassembled
- •Room temperature PMA and PM error dominated by concentric zones (≈0.2 waves rrns surface)
- Moderate cryo-distortion observed in the PMA and PM (≈0.5 waves rms surface)
- No "thermal hysteresis" observed
- No changes observed in PMA following reassembly
- PMA has been returned to Hughes Danbury Secondary mirror assembly currently in optical fabrication
- Metering tower/baffles currently being machined

Future Plans

- Remove concentric zones from PM with computer controlled polishing (<0.1 waves rms surface)
- Null figure the PM to achieve (<0.2 waves surface at 5K)
- Complete secondary mirror assembly
- Complete metering tower/baffles
- Retest the PMA to 5K
- Perform second null figuring cycle if necessary
- Integrate, align and test ITTT to 5K (≤0.72 waves rms wfe @ 0.633µm)
- Shake ITTT to launch vehicle loads and retest

50cm Test Mirrors

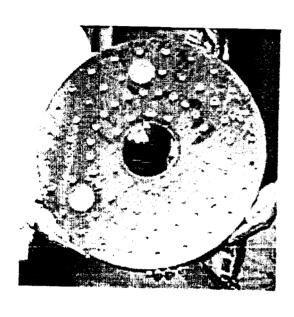

- HIP Beryllium
- Manufactured by Brush-Wellman Loral American" Beryllium, Tinsley
- Not lightweighted
- 1m focal length, sphere
- Cryo-test data (λ =0.633 μ m):

0.071λ rms wfe @ 300K

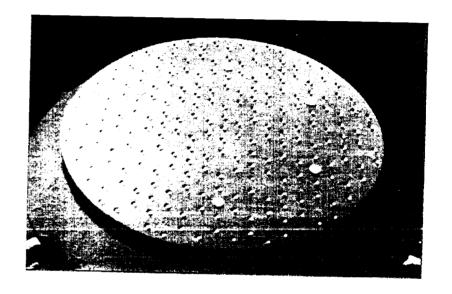
 0.15λ rms wfe @ 77K

 0.14λ rms wfe @ 5K

• "Thermal hysteresis" = 0.004λ


- •Reaction bonded silicon carbide
- •Manufactured by United Technologies, Lockheed and ITEK
- •Lightweighted: closed back (5kg)
- •1m focal length, sphere
- Cryo-test data (λ = 0.633 μ m):

 0.053λ rms wfe @ 300K


 0.126λ rms wfe @ 5K

• "Thermal hysteresis" = 0.03λ

Lockheed-Martin/Vavilov Institute Silicon Carbide Mirrors

- 60cm diameter
- lightweighted (5kg)
- 0.024λ rms wfe @ 0.633nm
- Not intended for cryogenic use

- •cryogenic autocollimation flat for testing ITTT
- •93cm diameter
- not extensively lightweighted (36kg)

Conclusions

- There is currently a significant level of activity in the development of cryogenic optics
- A number of cryogenic optics approaches are available to support space interferometry - choice depends on detailed mission requirements
- The 'thermal hysteresis" problem with large cryogenic beryllium optics has been solved
- The state-of-the-art in large cryogenic silicon carbide optics is advancing rapidly
- Interferometry community appear to be reasonable The future cryogenic optics needs of the space extensions of existing technology if

Issues

- Sufficient support for lightweight cryogenic optics technology development
- Clear, concise statement of requirements for nulling interferometer light collection telescopes
 - very low stray & scattered light
 - amplitude, phase and polarization matching in multiple arms of the interferometer
- Very large (5m,10m,20m), lightweight apertures will require significant technology development efforts
 - segmented mirrors
 - precision deployable structures
 - on-board alignment and control